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Abstract：- To improve the autonomy of intelligent vehicle in complex or uncertain environment, a dynamic 

planning control method for obstacle avoidance has been studied. By leading the degree of risk collision into 
control system as the input and using an improved fuzzy control algorithm, the input and output of the fuzzy 
controller can be considered as extract amount. The concept of patterns and pattern matching was used, and 
according to the matching degree of each rule, the weighted average algorithm was applied to determine the 
output of control action, this method can avoid a dynamic obstacle in a timely manner and shorten the computing 
time. At last, by simulation, it was verified that the dynamic control method can make intelligent vehicle avoid 
the dynamic obstacles independently, and walking toward the target point exactly. And the results also provide a 
theoretical basis for the realization of the intelligent vehicle moving independently and safely in the complex and 
dynamic environment. 

Key-Word: -Intelligent vehicle, Degree of risk collision, Fuzzy control, Dynamic obstacle avoidance  

1 Introduction 
When executing a task, the intelligent vehicle always 
runs in uncertain environment, so the path planning in 
the exploration task is a very important link[1,2]. The 
environment information can be described into two 
types, one is the global path planning[3,4] that knows 
the whole information of environment, and the other 
is local path planning[5,6] that knows only a part or 
know nothing about the environment. In the global 
path planning, the robot can program a safety and 
optimal path from the starting point to the target point, 
and the information always comes from global map 

database information. In the local path planning, the 
information always comes from sensors that detect 
the environment online and provide the information 
of obstacle shape, size, speed and so on. As most of 
obstacles in the environment are dynamic, on line 
local path planning method is needed to avoid 
dynamic obstacles and reach the target at last. 
Therefore, it is important to find an effective method 
to avoid dynamic obstacles in the exploration task. 
The fuzzy control method, the artificial potential field 
method, the rolling window method, and RL method 
and so on are used widely at present[7-10]. The above 
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methods do not consider about the motion 
information comprehensively, so a new method 
considering fully information about dynamic 
obstacles are needed to plan a safe path in 
non-structural road environment and to change the 
control strategy timely. 

 
 

2 Establishment of dynamic obstacle 
avoidance model and fuzzy control 
algorithm for intelligent vehicle 

 
 

2.1 kinematic equations for intelligent vehicle 
Considering about the distance between intelligent 
vehicle and obstacles as well as the velocity 
information, the collision risk can be established. 
Assuming the intelligent vehicle moving towards the 
target point G, the coordinate system can be 
established as figure 1. In this coordinate system, the 
location coordinate of the intelligent vehicle is (xg,yg), 
and the movement towards the target point can be 
described by the line speed VR and angular velocity 
ω . 

x
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Fig.1. Diagram for intelligent vehicle location and 

movement 
From figure 1 we know that the following 

equations exist, that is aR SVx cos=& , 

aR SVy sin=& and ω=aS& . From the equations it can 

be concluded that the obstacle avoidance action of 
intelligent vehicle can be achieved by changing the 
line speed VR and direction angle Sa(or ω ), and by 

controlling these parameters the path planning or 
navigation can be realized. 

 
 

2.2 The establishment of dynamic obstacle 
avoidance model 
In dynamic environment, the intelligent vehicle, 
obstacles and target are always changing, so if more 
object motion information included in the 
environment model, more efficient path planning will 
be carried out. In this paper, by using the principle of 
the speed barrier, the collision risk conception was 
introduced to make path planning of the intelligent 
vehicle[11,12]. In order to simplify the problem, the 
model of intelligent vehicle can be regarded as a point, 
and the obstacle can be treated expansively according 
to the dimension of intelligent vehicle and safety 
requirements. 

The spatial location diagram of the intelligent 
vehicle and obstacle is showed in figure 2. In this 
figure, Bi represents the ith obstacle and its velocity is 
Vi, and VR is the relative speed between the intelligent 
vehicle and obstacles. 

 
Fig.2. Spatial location diagram of the intelligent 

vehicle and obstacle 
The principle of the speed and barriers is showed 

in figure 3. In this figure, CCi represents the collision 
region, VOi is the next collision region in the next 
time when moving on current speed. In order to carry 
on the effective collision avoidance, the intelligent 
vehicle should select its speed in the next time when 
the speed can be reached.  
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Figure 4 represents the situation that there are 
several obstacles, and the quadrilateral PSFQ is the 
velocity range that the intelligent vehicle can reach. 
And the reachable avoidance velocities (RAV) 
composed by several distinction regions which 
shows in figure 4 is the region 1, 2 and 3. And region 
1 is the reached region, where the intelligent vehicle 
should slow down. While in region 2 and region 3, 
the intelligent vehicle should speed up to surpass the 
obstacle, and we can know from figure 4 that the 
obstacle 2 is above Bi and the obstacle 3 is below Bi. 

 

Fig.3. Speed barrier diagram 
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Fig.4. Diagram of preventing collisions under the 

situation of several obstacles 

In order to deal with the problem, we introduce the 
concept of collision risk. The collision risk can be 
described as the following. When the risk of collision 
exists, the main factors depend on the following 
factors: the initial minimum determination distance, 
the initial nearest point position, and the orientation 

of intelligent vehicle that relative to obstacles. And 
the main index is the minimum safety distance 
between intelligent vehicle and the obstacle. The 
possibility of collision risks is defined by the main 
factor and the main index. 

The schematic diagram of collision risk is 
showed in figure 5. Where di means the distance 
between intelligent vehicle and the obstacle i, VR, Bi 

represents the relative velocity between intelligent 
vehicle and obstacles, A and B are the two edge 
points of obstacles perceived by sensors on R, and 
θ  is the angle between relative velocities and 
center connection. 

 
Fig.5. Schematic diagram of space collision risk 
The Space collision risk (SCR) can be defined as 

the following, 
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when maxmin θθθ << ,VR，Bi is in CCi; 

when min0 θθ ≤≤ , iBRV , is out of CCi.        (2) 

The a and b are impact factors, D(t) reflects the 
relationship between distance and SCR(t), and F(t) 
reflect the relationship between the direction of 
relative velocity and SCR(t). dmax is the maximum 
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measuring distance, dmin is the safe distance, maxθ  
is the maximum measuring angle, and minθ  is the 
safe angle. 

 
 

3 Conventional fuzzy control 
algorithm 
Typical operations throughout the sampling period on 
conventional fuzzy controller include measuring input 
sampling, accurate input fuzzified and to be expressed 
with the fuzzy sets, and at last, the fuzzy output can be 
transferred into accurate value and then the whole 
course can be controlled. Fuzzy inference involves two 
aspects: firstly, the matching degree between fuzzy 
input and the rule conditions (IF) should be calculated, 
secondly, the rules that be activated should be 
determined, and at last, the final results of these 
activated rules (THEN) should be averaged by its 
weight to form the final control set[13-15]. 

In fuzzy control, for the low compatibility between 
the value (or accurate) control environment and 
language inference algorithm, the processing becomes 
complicated and which usually requires two interfaces 
to link the two part[16-18]. To simplify this process 
and strengthen the connection of the various parts, 
an improved fuzzy control algorithm has been 
applied in the paper. Considering the input/output to 
be accurate values in the fuzzy controller, the 
improved algorithm includes two points: one is 
pattern matching and the other is weighted average. 
Which have removed the tedious fuzzy course and 
exact process. The starting point of the algorithm is 
to introduce the concept of patterns and pattern 
matching. The model includes the input mode and 
regular mode, and the matching degree between 
them can be expressed by the norm. Then according 
to each rule’s matching degree, the output of the 
control action can be determined by the weighted 
average algorithm. In this process, the IF part in the 
pattern matching of the processing should find the 
active unit, and the THEN part of the weighted 
average processing rules will form the control 
output. 

 

 
3.1 Input and output 
Assuming that the number of inputs and outputs are 
both m in the multi-variable controller process, and 
the input of fuzzy controller can be various 
combinations of control error (E), the change rate of 
error (C), and the sum of error (S). The kth sampling 

period can be expressed as )( sci kTe , where  is 

the sampling period, r and yp∈Rm is respectively 
represent the setpoint and process output 
(i=1,2,  ... ,m). Then we can get )( sc kTc  and 

)( sc kTs from )( sc kTe , that is the error change rate is 
])1[()()( scscsc TkekTekTc −−= , and the sum of error is 

)()(
1

s

k

i
csc iTekTs ∑

=

= . 

Then three kinds of fuzzy controller input mode 
can be structured as the following, 

The first input mode: cmcmcccc cecece ,,,,,, 2211 L , 
The second input mode: 

cmcmcccc sesese ,,,,,, 2211 L , 
The third input mode: 

cmcmcmcccccc scescesce ,,,,,,,, 222111 L . 
And the three input modes can be abbreviated as 

EC, ES and ECS. Where E,C,S respectively represent 
the error, the error change rate and error sum. One 
input mode can be selected from the three modes, and 
it can be expressed as ui, where i=1,2,…,n. And the 
output of fuzzy controller can be expressed as vk, 
where k=1,2,…,m.  

 
 
3.2 Rule pattern and input mode 
Assuming that the number of rules in the control rule 
base is M, and each form of the rule is as the 
following, 

IF ( 11 UA j = ) AND ( 22 UA j = ) …AND 
( n

j
n UA = ), 
THEN ( 11 VB j = ) AND ( 22 VB j = ) AND 

( n
j

n VB = ). 
Where iU  and kV  is the linguistic variables 

corresponding to the numeric variable ui and vk. 
j

iA and j
kB  is the fuzzy subset to express the 

language items, and i
j

i UA ∈ , k
j

k VB ∈ .The fuzzy 
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subset )( i
j

i uA and )( k
j

k vB  can be expressed as 
normalized fuzzy subset by membership 
function )( i

j
i uA : ]1,0[→iU  and )( k

j
k vB : ]1,0[→kV . 

The definition of membership function is as the 
following, 
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Where i
j

iu UM ∈, , k
j

kv VM ∈, , j
nu,δ >0 

and j
kv,δ >0. 

In formula (3) and formula (4), there are only 
two parameters for each membership function, that 

are j
iuM , and j

iu,δ  (or j
kvM , and j

kv,δ ), where 

)( ,,
j

kv
j

iu MM is the center of the domain )( j
k

j BAi . 

Thus jAi  and j
kB  can be expressed as 

),(),,( ,,,,
j

kv
j

kv
j

k
j

iu
j

iu
j

i MBMA δδ ==   (5) 
By the above formula, the jth rule can be written 

as 
IF  ),( ,,

j
lu

j
luM δ  AND …AND ),( ,,

j
nu

j
nuM δ  , 

THEN  ),( ,,
j

lv
j

lvM δ  AND … AND 

),( ,,
j

mv
j

mvM δ . 

In the IF section of the rules, the input space can 
be assumed as 

n
n RUUU ∈×××=Ω )( 21 L ,

Ω∈= ),,,( 21
j

un
j

u
j

u
j

u MMMM L  

and ),,,( 21
j

un
j

u
j

u
j

u δδδ L=Δ . So the condition part 

of the jth rule can be regarded as a sub space 
Ω=Ω j  or a hyperplane, the center and Radius is 

respectively j
uM and j

uΔ ,which can be simplified 

as IF )( jM uΔ , where ),()( j
u

j
uu MjM Δ=Δ . 

 
 

3.3 Pattern matching 
In the control process, as there is improved fuzzy 
algorithm based on the predetermined control 
process, appropriate control action can be gotten by 
the current input and the M rules. Taking the concept 
of distance matrix theory, the similarity between the 
two modes can be measured. And the algorithm to 
measuring the distance can be defined. Assuming 

that the current input is ],,,[ 002010 nuu δδ L= ，then 

the jth rule mode between )( jM uΔ can be expressed 

as ]1,0[∈jS , which can be defined as,  

))(,(1 0 jMuDS u
jj Δ−=           （6) 

Where Dj represents the relative distance from u0 
to )( jM uΔ . Here are three commonly used 

calculation method to calculate jD . 

(1) Relative Ohm distance of 
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Where . expresses the norm. 

(2) Relative Hamming moment distance 
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(3) The relative maximum distance 
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From formula (6) to (9) we can know that, if u0 
and )( jM uΔ matched exactly, that means u0 is 

completely the same with center vectors j
uM , then 

we get  0=jD  and 1=jS . Otherwise, if u0 and 
)( jM uΔ don’t matched, that means u0 is out of 
)( jM uΔ , then we get 0=jS . And in other 
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conditions, we get 10 << jD and 10 << jS , which 
means partial matches. 
 
 
3.4 The weighted average 
As the membership function has been defined, the 
rules can be expressed as the following,  

IF )( jM uΔ  THEN ),( 1,1,
j

v
j

vM δ AND 

),( ,,
j

mv
j

mvM δ , 

Assuming that when k  and  takes any value, 

the value of j
kv,δ  will be the same. When the 

current input mode j is given and the match degree 

is 1=jS , the control action will be deduced as 

),,2,1(, mkMv j
mvk L== . And this result is meeting 

with the maximum degree of decision-making 
program and meanwhile this method will be the 
same with the center of gravity method(COG). If 
the membership function is on the centrosymmetric, 
the above conclusion will be proved. In addition, if 

0=jS , the jth rules will have no effect on the 

control output; and when 10 << jS , there will be 
several rules effect on the control output. 

Assuming that there are existing input u0 and the 
number of the rule is P, and after the pattern 
matching, the number of match degree will be Q 

which meets the condition of 10 << jS . The 

match degree can be expressed as QSSS ,,, 21 L , 

which will correspond with Q group center of the 
control rule THEN, that is as the following, 

{ } { }Q
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Q
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Q
vmvvv MMMMMM ,2,1,

1
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1
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1
1, ,,,, LLL  

Then we can deduce that the control action vk of 
the kth components should be expressed as  
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Where        

∑
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= Q

q

q

q
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S

SS
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In the above formula(10), the weighted average 
of the activated rule THEN is given, and the 
proportion of each rule in the control action is 
determined by their matching degree. So only the 
central element of the THEN part whose maximum 
membership degree is 1 has been used, and we can 
regard that it is the changing form of the maximum 
degree of decision-making program.  

 
 

4 Improvement fuzzy neural network 
dynamic path planning based on the 
risk of collision 
As the accurate mathematical model is difficult to be 
established in the practice, and meanwhile the 
environment for intelligent vehicle is also changing, 
improved fuzzy control algorithm combining with 
the advantages of neural networks will be applied for 
dynamic path planning. By applying this method, the 
fuzzy control can have the ability of self-learning, 
the neural network can be given the ability of 
induction and inference, and meanwhile the network 
structure and weights will have clear physical 
meaning to make the design and initialization of the 
network easier. 
 
 
4.1 The establishment of the dynamic 
environment for intelligent vehicle 
Fuzzy neural network topology is showed in Figure 6. 
The first layer is to input values, it can sent the input 
values directly to the next layer. There are four input 
variables, which are the left obstacle collision risk 
LSCR, front obstacle collision risk CSCR, the right 
obstacle collision risk RSCR and targeting Tr. 

Each node in layer 2 represents a linguistic 
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variable values, such as NB, PS and so on. It is to 
calculate the membership function of each input 
component which belongs to the fuzzy sets of 
language variable value. By the definition of the 
above collision risk, the range of SCR is 0～2, 
where a=1 and b=1. Then the fuzzy subset of LSCR, 
CSCR, RSCR can be defined as ｛Z, S, M, B｝, which 
represent the collision risk can be described as zero, 
few, medium and large. And it also means that the 
collision risk can be described into 4 levels, that is 
m1 =m2=m3=4. While the target location Tr can be 
described into 5 degrees, which are ｛TLB, TLS, TZ, 
TRS, TRB｝, and they are respectively represent left 
large, left few, zero, right few, and right large. So 
the partition number of navigation angle input fuzzy 
is 5, that is m4=5. The above membership functions 
is using the Gaussian function as  

ij

iji cx

j
i e

2

2)(

σμ

−−

=  
Where cij and σij represent the center and width 

of membership function. In dynamic local path 
planning, the total number of layer nodes would use 
the speed information of the intelligent vehicle and 
obstacles. In the simulation, collision risk from each 
direction will be regarded as the inputs for the fuzzy 
Neural Network. And considering that the intelligent 

vehicle will eventually have to reach the target point, 
the target location Tr is also regarded as an input. 
And correspondingly, the output of the network for 
the intelligent vehicle is the speed V and the turning 
angle Sa. 

Each node in layer 3 represents a mode of rule, it 
is used to match the fuzzy rules, and calculate the 
match degree between each rule and the set of points 
in the space of Ω . The total number of nodes in the 

layer is 543213 mmmmmN ××××= . 

The number of nodes in layer 4 is the same with 
layer 3, it is to realize the normalized calculation, 

that is mj
m

i
i

j
j ,,2,1;
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L==

∑
=

α

α
α  

Layer 5 is to output the accurate information by 
weighted average, that 

is ∑
=

=
m

j
jjy

1
11 αω and ∑

=

=
m

j
jjy

1
22 αω

. 
Where y1 repesent the speed VR and y2 represent 

the turning angle of Sa。 
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Fig.6. Fuzzy neural network topology 
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4.2Fuzzy neural network learning algorithm 
Basing on the above structure of fuzzy neural 
network, the fuzzy partition number of the input 
component is pre-determined. So only the connection 

weights of the last layer( ),,2,1;2,1( mjiij L==ω ), the 

second layer of the center value of membership 

function , and the width ),,2,1;4,3,2,1( mjiij L==σ  

should be studied. 
As the network given above is essentially a 

multilayer feedforward network, so it can be 
modeled on the BP neural network with error back 
propagation method to adjust the parameters of the 
learning algorithm. The error cost function can be 
written as 

∑
−

−=
2

1

2)(
2
1

i
idif yyE  

Where, diy  and iy are respectively denote the 

desired output and actual output value. 
Using error back propagation algorithm to 

calculate ijfE ω∂∂ / , ijf cE ∂∂ /  and ijfE σ∂∂ / . And 

then we can adjust the three parameters ijω , ijc  

and ijσ  by a ladder degree of optimization 

algorithm. Formalized description of the input and 
output of the neurons of the network should be 
carried out, each neuron input defined in the network 

is ),;,,( )()(
1

)1()1(
1

)( q
jn

q
j

q
n

qq xxf ωω LL −− , and the 

output of the node is 
)()()( qqq

j fgx = . Then in the 

fuzzy neural network of fig.3, the node function of 
each layer is given as the following, 
The first layer, 

 4,3,2,1;, )1()1()1()1( ==== ifgxxf iiiii  
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The third layer, 
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The forth layer, 
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m

i ij
m

i ijj xxf
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The fifth layer, 
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j ji xf
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2,1;)5()5()5( ===== ifgyx jiiii α  

Then by calculation, the algorithm for parameter 
adjustment can be obtained as, 

mji

E
ll

ij

f
ijij

,,2,1;2,1

;)()1( 1

L==

∂

∂
−=+

ω
βωω

      （11）
 

mji

c
E

lclc
ij

f
ijij

,,2,1;4,3,2,1

;)()1( 2

L==

∂

∂
−=+ β

     （12） 

mji

E
ll

ij

f
ijij

,,2,1;4,3,2,1

;)()1( 3

L==

∂

∂
−=+

δ
βδδ

     （13） 

Where, 1β , 2β and 3β are the learning rate. 

 
 

5 Simulation 
Based on the above method, the MATLAB software 
has been used to make simulation. And the result has 
been compared with the ordinary fuzzy control 
algorithm. Considering to the learning convergence 
rate, we set 7.0321 === βββ . And two methods 
(the improved and the forward fuzzy neural network 
control method ) have been adopted to make path 
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planning in a static environment, shown in figure 7 
and figure 9 The starting point of intelligent vehicle 
is S (10,0) and the target point is (35,35). It can be 
seen from Figure 7 and figure 9 that slight difference 
existed in the planning path between the algorithm of 
improved fuzzy neural network control and ordinary 
fuzzy control, and in the static environment, the 
algorithm of ordinary fuzzy algorithm consuming 
shorter time in the process of fuzzification and 
defuzzification. 

 
Fig.7 The ordinary fuzzy path planning 

algorithm in static environment 

The speed curve for improved algorithm static 
path planning is showed in figure 11. From this 
figure it can be seen that the maximum speed is 0.09 
m/s when there is no obstacle in the left and the right 
of intelligent vehicle. When there are obstacles in the 
front, the intelligent vehicle will avoid them and 
advance to the target point, and the vehicle’s velocity 
will be reduced. So when there are complicated 
conditions, more obstacles and large collision risk, 
there will be a small scale in the speed. And this 
condition is similar with humane driving, for the 
judgment process to complex environment will lead 
to the speed’s fluctuation. 

 
Fig.8. The ordinary fuzzy path planning 
algorithm in dynamic environment 

 
Fig.9. The improved path planning algorithm in 

static environment 

 
Fig.10. The improved path planning algorithm 

in dynamic environment 

The path planning for intelligent vehicle adopting 
two algorithms in a dynamic environment is showed 
in figure 8 and figure 10. There are two moving 
obstacles in the environment and their initial position 
is respectively (3,3) and (40,35). And the two 
obstacles are moving respectively to the right and the 
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left by the uniform velocities of 0.2m/s and 0.5m/s. 
There are also another five static obstacles in the 
environment. It can be seen from figure 8 and figure 
10 that there are greater difference in the dynamic 
obstacle environment between the improved fuzzy 
neural network control algorithm and the ordinary 
fuzzy control algorithm. And it indicates that 
ordinary fuzzy algorithm consumes time in 
fuzzification and defuzzification which lengthened 
the planning path, while the improved algorithm is so 
simple to shorten the calculation time, and 
meanwhile the intelligent vehicle can avoid dynamic 
obstacles timely. 

The speed curve for improved algorithm dynamic 
obstacles path planning is showed in figure 12. From 
the speed curve we can see that when the intelligent 
vehicle encountered dynamic obstacles, the planning 
path will change, and the intelligent vehicle will 
reach the crossing point where it meet the first 
dynamic obstacle after 9 sampling time. And the first 
moving obstacles will reach the crossing point after 
12 sampling time. Then after another 14 sample time 
the intelligent vehicle will reach the crossing point 
where it meet the second dynamic obstacles. And we 
also can see that the second moving obstacle will 
reach the intersection through 8 sampling time. As 
the intelligent vehicle and the moving obstacles 
reach the same location at different times, the 
moving obstructions can thus be avoided. 

 

Fig.11 Speed curve in a static environment for the 
path planning of intelligent vehicle  

Fig.12 Speed curve in a dynamic environment for the 
path planning of intelligent vehicle 

 
 
6 Conclusions 
In the dynamic environments for path planning, it is 
necessary to consider both the distance information 
of obstacles and the motion information of obstacles. 
In this paper, a new fuzzy neural control algorithm 
has been used, and the collision risk has also been 
introduced to act as a control input, which provides a 
theoretical basis for the realization of the 
independent safety moving for intelligent vehicle in 
the complex and dynamic environment. By 
conclusion, it can be expressed as the followings, 
（1） The inputs and outputs of fuzzy controller 
has been considered as exact amount directly in 
improved fuzzy control algorithm, which includes 
the two points of pattern matching and weighted 
average, and then the course of tedious fuzzy and 
precision has been removed. 
（2） The patterns and pattern matching have 
been introduced into the study, and the weighted 
average algorithm has been used to determine the 
output of the control action by the match degree of 
each rule, which shortened the computing time. 
（3） Controlling by fuzzy neural model based on 
the collision risk, the intelligent vehicle can avoid the 
complexity of the dynamic obstacles and move 
towards the target point. 
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